Benzene molecule

This tutorial explains how to optimize the geometry by using different algorithms. In this tutorial, a benzene molecule is placed in a cubic box with the cell edges of 10 Angstrom. pot_C.pbe1 and pot_H.lda1 are used with the cutoff energies of 36 Ry (GMAX=6) and 400 Ry (GMAXP=20) for the wave functions and the argmentation charge, respectively.

  • Input file (nfinp_1)
         0     0     0     0     0     0 : I_CTRL(1:6) (DUMMY)
      6.00 20.00     2    12    12       : GMAX GMAXP NTYP NATM NATM2
        25     0                         : NUM_SPACE_GROUP TYPE_BRAVIS_LATTICE
     18.89726878 18.89726878 18.89726878 90.0 90.0 90.0 : A B C ALPHA BETA GAMMA
         1     1     1     1     1     1 : K_MESH
         1     0                         : NCORD NINV
             0.0000000000        2.6366036317        0.0000000000     1     1     1
            -2.2833569864        1.3182923672        0.0000000000     1     1     1
            -2.2833569864       -1.3182923672        0.0000000000     1     1     1
             0.0000000000       -2.6366036317        0.0000000000     1     1     1
             2.2833569864       -1.3182923672        0.0000000000     1     1     1
             2.2833569864        1.3182923672        0.0000000000     1     1     1
             0.0000000000        4.6909824123        0.0000000000     1     1     2
            -4.0624970473        2.3454912062        0.0000000000     1     1     2
            -4.0624970473       -2.3454912062        0.0000000000     1     1     2
             0.0000000000       -4.6909824123        0.0000000000     1     1     2
             4.0624970473       -2.3454912062        0.0000000000     1     1     2
             4.0624970473        2.3454912062        0.0000000000     1     1     2
      6.00  0.15 28.29     3     1  0.00 : TYPE IATOMN ALFA AMION ILOC IVAN ZETA1
      1.00  0.15 28.29     3     1  0.00 : TYPE IATOMN ALFA AMION ILOC IVAN ZETA1
         0     0     0     0     0       : ICOND INIPOS INIVEL ININOS INIACC
         0     1                         : IPRE IPRI
       300   300     0    28000.00     0 : NMD1 NMD2 LAST_ITER CPUMAX IFSTOP
         6     1                         : WAY_MIX MIMX_WHAT
         0     8  0.80                   : ITER_START KBXMIX  MIX_ALPHA
      0.60  0.50  0.60  0.70  1.00       : DTIM1 DTIM2 DTIM3 DTIM4 DTIM
    500.00     4     1    0.10D-08       : DTIO IMDALG IEXPL EDELTA
    0.0010    0.10D-03     0             : WIDTH FORCCR ISTRESS
    ggapbe           1                   : XCTYPE KSPIN
      1.00                               : DESTM
       101                               : NBZTYP
         4     4     4                   : (DUMMY)
         4     4     4                   : (DUMMY)
        18                               : KEG
         1                               : NEXTST
         0                               : (DUMMY)
         2                               : IMSD
         0                               : EVALUATE_EKO_DIFF
         0                               : NPDOSAO
         0  0.00                         : SM_N DOPPING
    In this example, the GDIIS method is used (IMDALG=4) with the time step of 500 atomic unit. The GDIIS method works fine, when the atomic positions are close to the equilibirium. A rule of thumb is to switch from quenched molecular dynamics (IMDALG=2) to GDIIS when the maximum force becomes smaller than 1.e-2. Note that in the current implementation, GDIIS method does not work when the optimization step exceeds the 3 * N, where N is the number of atoms.

Monitoring the maximum force by using grep as (supposing the output file is "nfout_1")

> grep -A1 f_max nfout_1

we obtain

   NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
     1    -40.14215406  0.002809  0.001947  0.10D-08  0.12D-06  0.10D-08
--
   NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
     2    -40.14215395  0.005734  0.004041  0.22D-08  0.17D-06  0.22D-08
--
   NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
     3    -40.14224266  0.001880  0.001393  0.47D-08  0.13D-06  0.47D-08
--
   NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
     4    -40.14225368  0.000871  0.000552  0.11D-08  0.15D-06  0.11D-08
--
   NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
     5    -40.14225523  0.000046  0.000030  0.51D-09  0.85D-07  0.51D-09

and we can see that the geometry optimization converges within 5 steps.

Then, let us use the quenched molecular dynamics (QMD) for comparison. In this case we use IMDALG=2 and the time step (DTIO) of 200 atomic unit as

200.00     2     1    0.10D-08       : DTIO IMDALG IEXPL EDELTA

and the resulting maximum forces are

   NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
     1    -40.14215406  0.002809  0.001947  0.10D-08  0.12D-06  0.10D-08
--
   NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
     2    -40.14218382  0.001971  0.001448  0.22D-08  0.10D-06  0.22D-08
--
...
--
   NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
    14    -40.14225511  0.000195  0.000135  0.15D-08  0.66D-07  0.15D-08
--
   NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
    15    -40.14225523  0.000071  0.000033  0.21D-09  0.23D-07  0.21D-09

The convergence is achieved with 15 steps and we can see that the GDIIS method is much more efficient than QMD.

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2023-01-23 (月) 11:57:01 (460d)