• 追加された行はこの色です。
  • 削除された行はこの色です。
* Benzene molecule [#ncdd4e2d]
This tutorial explains how to optimize the geometry by using different algorithms.
In this tutorial, a benzene molecule is placed in a cubic box with the cell edges of 10 Angstrom. pot_C.pbe1 and pot_H.pbe1 are used with the cutoff energies of 36 Ry (GMAX=6) and 400 Ry (GMAXP=20) for the wave functions and the argmentation charge, respectively.
In this tutorial, a benzene molecule is placed in a cubic box with the cell edges of 10 Angstrom. pot_C.pbe1 and pot_H.lda1 are used with the cutoff energies of 36 Ry (GMAX=6) and 400 Ry (GMAXP=20) for the wave functions and the argmentation charge, respectively.
- Input file (nfinp_1)
      0     0     0     0     0     0 : I_CTRL(1:6) (DUMMY)
   6.00 20.00     2    12    12       : GMAX GMAXP NTYP NATM NATM2
     25     0                         : NUM_SPACE_GROUP TYPE_BRAVIS_LATTICE
  18.89726878 18.89726878 18.89726878 90.0 90.0 90.0 : A B C ALPHA BETA GAMMA
      1     1     1     1     1     1 : K_MESH
      1     0                         : NCORD NINV
          0.0000000000        2.6366036317        0.0000000000     1     1     1
         -2.2833569864        1.3182923672        0.0000000000     1     1     1
         -2.2833569864       -1.3182923672        0.0000000000     1     1     1
          0.0000000000       -2.6366036317        0.0000000000     1     1     1
          2.2833569864       -1.3182923672        0.0000000000     1     1     1
          2.2833569864        1.3182923672        0.0000000000     1     1     1
          0.0000000000        4.6909824123        0.0000000000     1     1     2
         -4.0624970473        2.3454912062        0.0000000000     1     1     2
         -4.0624970473       -2.3454912062        0.0000000000     1     1     2
          0.0000000000       -4.6909824123        0.0000000000     1     1     2
          4.0624970473       -2.3454912062        0.0000000000     1     1     2
          4.0624970473        2.3454912062        0.0000000000     1     1     2
   6.00  0.15 28.29     3     1  0.00 : TYPE IATOMN ALFA AMION ILOC IVAN ZETA1
   1.00  0.15 28.29     3     1  0.00 : TYPE IATOMN ALFA AMION ILOC IVAN ZETA1
      0     0     0     0     0       : ICOND INIPOS INIVEL ININOS INIACC
      0     1                         : IPRE IPRI
    300   300     0    28000.00     0 : NMD1 NMD2 LAST_ITER CPUMAX IFSTOP
      6     1                         : WAY_MIX MIMX_WHAT
      0     8  0.80                   : ITER_START KBXMIX  MIX_ALPHA
   0.60  0.50  0.60  0.70  1.00       : DTIM1 DTIM2 DTIM3 DTIM4 DTIM
 500.00     4     1    0.10D-08       : DTIO IMDALG IEXPL EDELTA
 0.0010    0.10D-03     0             : WIDTH FORCCR ISTRESS
 ggapbe           1                   : XCTYPE KSPIN
   1.00                               : DESTM
    101                               : NBZTYP
      4     4     4                   : (DUMMY)
      4     4     4                   : (DUMMY)
     18                               : KEG
      1                               : NEXTST
      0                               : (DUMMY)
      2                               : IMSD
      0                               : EVALUATE_EKO_DIFF
      0                               : NPDOSAO
      0  0.00                         : SM_N DOPPING
In this example, the GDIIS method is used (IMDALG=4) with the time step of 500 atomic unit. The GDIIS method works fine, when the atomic positions are close to the equilibirium. A rule of thumb is to switch from quenched molecular dynamics (IMDALG=2) to GDIIS when the maximum force becomes smaller than 1.e-2. Note that in the current implementation, GDIIS method does not work when the optimization step exceeds the 3 * N, where N is the number of atoms.

Monitoring the maximum force by using grep as (supposing the output file is "nfout_1")
 grep -A1 f_max nfout_1
we obtain
    NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
      1    -40.14215406  0.002809  0.001947  0.10D-08  0.12D-06  0.10D-08
 --
    NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
      2    -40.14215395  0.005734  0.004041  0.22D-08  0.17D-06  0.22D-08
 --
    NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
      3    -40.14224266  0.001880  0.001393  0.47D-08  0.13D-06  0.47D-08
 --
    NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
      4    -40.14225368  0.000871  0.000552  0.11D-08  0.15D-06  0.11D-08
 --
    NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
      5    -40.14225523  0.000046  0.000030  0.51D-09  0.85D-07  0.51D-09
and we can see that the geometry optimization converges within 5 steps.

Then, let us use the quenched molecular dynamics (QMD) for comparison.
In this case we use IMDALG=2 and the time step (DTIO) of 200 atomic unit as
 200.00     2     1    0.10D-08       : DTIO IMDALG IEXPL EDELTA
and the resulting maximu forces are
and the resulting maximum forces are
    NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
      1    -40.14215406  0.002809  0.001947  0.10D-08  0.12D-06  0.10D-08
 --
    NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
      2    -40.14218382  0.001971  0.001448  0.22D-08  0.10D-06  0.22D-08
 --
 ...
 --
    NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
     14    -40.14225511  0.000195  0.000135  0.15D-08  0.66D-07  0.15D-08
 --
    NIT     TotalEnergy     f_max     f_rms      edel      vdel      fdel
     15    -40.14225523  0.000071  0.000033  0.21D-09  0.23D-07  0.21D-09
The convergence is achieved with 15 steps and we can see that the GDIIS method is much more efficient than QMD.


トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS