STATE-Senri

Simulation Tool for Atom TEchnology

About STATE

STATE (Simulation Tool for Atom TEchnology) is plane-wave pseudopotential implementation of the electronic structure calculations and ab intio molecular dynamics simulations based on density functional theory within the local, semilocal, and nonlocal density functional.

  • Electronic minimization
    • Davidson
    • RMS-DIIS (Residual Minimization Method/Direct Inversion in Iterative subspace)
  • Electronic structure analysis
    • Density of states, partial density of states
    • Band structure
    • Crystal orbital overlap population
    • STM simulation
  • Structural optimization
    • Quenched Molecular dynamics
    • Generalized Direct Inversion in Iterative Subspace (GDIIS)
  • Reaction path search
    • Nudged Elastic Band (NEB) method
    • Climbing Image nudged elastic band (CINEB) method
  • Molecular dynamics
    • NVE ensemble
    • NVT ensemble (velocity-scaling,Nose-Hoover)
  • Free energy sampling
    • Blue moon ensemble
    • Metadynamics
  • Real-space projection of nonlocal pseudopotential
  • Accurate slab calculation with the effective screening medium (ESM) method
  • Electrified slab calculation with the ESM method

STATE is written in the fortran90 and parallized with MPI and Open MPI.

Version of STATE

  • 5.6.1

Compiling STATE

To compile STATE, LAPACK and FFTW3 are required in addition to the fortran90 compiler. Note that how to compile STATE is slightly different depending on the version.

Running STATE

  • First, copy or download a set of pseudopotentials (i.e., "gncpp"). In the following, we use CO as an example and assume that the source directory is
    /home/hamada/STATE/src/STATE_5.6.1
    and pseudopotentia directory,
    /home/hamada/STATE/gncpp
    Let us assume pot_C_pbe1 and pot_O_pbe1 are the pseudopotential files for C and O, respectively. In the working directory execute
    ln -s /home/hamada/STATE/src/STATE_5.6.1/STATE
    and
    ln -s  /home/hamada/STATE/gncpp/pot_C_pbe1 fort.37
    ln -s  /home/hamada/STATE/gncpp/pot_O_pbe1 fort.38
    Set the source and pseudopotential directories according to your environment. Then execute
    mpirun -np 2 STATE < nfinp_1 > nfout_1
    where "nfinp_1" and "nfout_1" are the input and output files for CO, respectively. Here we use 2 processors, but the command change depending on the environment.

Pseudopotential

Pseudopotentials are located in "gncpp" directory. Information can be found in the header of the pseudopotential files.

  • Example: pot_Pt_pbe1 or Pt_pbe1/#vnew.data
       78  10   1   1  : natomn, ival, iloc, itpcc    
    ggapbe             : name                         
    • natomn: Atomic number
    • ival: Number of valence electrons
    • iloc: Angular momentum (+1) for the local pseudopotential
    • itpcc: Partial core correction (itpcc=1: yes、itpcc=0: no)

Examples

Tutorial

To be added

Utilities

To be added

References

Electronic structure

  • Richard M. Martin, Electronic Structure: Basic Theory and Practical Methods.
  • M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

Density functional theory

  • P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
  • W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

Normconserving pseudopotential

  • N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

Ultrasoft pseudopotential

  • D. Vanderbilt, Phys. Rev. B41, 7892 (1990).
  • A. Pasquarello, et al., Phys. Rev. Lett. 69, 1982 (1992).
  • K. Lassonone, et al., Phys. Rev. B47, 10142 (1993).

Iterative diagonalization

  • G. Kresse and J. Furthmuller, Phys. Rev. B54, 11169 (1996).
  • G. Kresse and J. Furthmuller, Comp. Mat. Sci. 6. 15 (1996).
    And references therein.

Original references for Davidson method and RMM-DIIS

  • E.R. Davidson, J. Comp. Phys. 17. 87 (1975).
  • D. M. Wood and A. Zunger, J. Phys. A: Math. Gen. 18, 1343 (1985).

Real-space projection of the nolocal pseudopotential

  • R. D. King-Smith, et al., Phys. Rev. B44, 13063 (1991).

K-point sampling

  • H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188 (1976).

Nudged elastic band and quenched molecular dynamics methods

  • H. Jonsson, G. Mills, and K. W. Jacobsen, "Nudged elastic band method for finding minimum energy paths of transitions," in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), p 385.
  • G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).

Dipole correction

  • J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).
  • L. Bengtsson, Phys. Rev. B 59, 12301 (1999)

Effective screening medium (ESM) method

  • M. Otani, O. Sugino, Phys. Rev. B 73, 115407 (2006)
  • I. Hamada, M. Otani, O. Sugino, Y. Morikawa, Phys. Rev. B 80, 165411 (2009)
トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS