* Silicon in the diamond structure [#eb0372c8]
In this tutorial how to optimize the cell parameter(s) of a crystal is described by using Silicon in the diamond structure as an example.

#Contents

** Optimization of cell parameters (1) [#cec999a2]
As a way of optimizing the cell parameter of crystalline Silicon, let us calculate the total energy as a function of cell parameter a (celldm(1) or alat) by using the following input file.
 &control
    calculation='scf'
    restart_mode='from_scratch',
    pseudo_dir = '/home/ikutaro/QE/pseudo/',
    outdir='./tmp'
    prefix='si'
    tstress = .true.
    tprnfor = .true.
    nstep = 500
    verbosity='high'
 /
 &system
    ibrav = 2, celldm(1) = 10.35, nat= 2, ntyp= 1,
    ibrav = 2
    celldm(1) = 10.35
    nat = 2
    ntyp = 1
    ecutwfc = 35.0
    !nbnd=48
    !occupations='smearing', smearing='mp', degauss=0.02
 /
  /
 &electrons
    diagonalization='cg'
    conv_thr = 1.0e-12
    mixing_beta = 0.7
 /
 ATOMIC_SPECIES
  Si  0.000   Si_ONCV_PBE-1.1.upf
 ATOMIC_POSITIONS (crystal)
  Si  0.0000  0.0000  0.0000
  Si  0.2500  0.2500  0.2500
 K_POINTS (automatic)
  04 04 04 1 1 1
Here the cutoff energy of 35 Ry and the shifted (Monkhorst-Pack) k-point mesh of 4 x 4 x 4 are used.
By varying the lattice parameter (celldm(1)) from 10.20 to 10.40, the following data is obtained
 10.20 -15.76407573
 10.21 -15.76429413
 10.22 -15.76450080
 10.23 -15.76468908
 10.24 -15.76486394
 10.25 -15.76501895
 10.26 -15.76516290
 10.27 -15.76528971
 10.28 -15.76540192
 10.29 -15.76549787
 10.30 -15.76558501
 10.31 -15.76565239
 10.32 -15.76570775
 10.33 -15.76574875
 10.34 -15.76577425
 10.35 -15.76578726
 10.36 -15.76578313
 10.37 -15.76576812
 10.38 -15.76573973
 10.39 -15.76569547
 10.40 -15.76563892
#ref(http://www-cp.prec.eng.osaka-u.ac.jp/puki_state/graph/ftot_Si.png,center)
By fitting the total energy to the 6th order polynomial, equilibrium lattice constant of 10.3536 Bohr (5.4789 Angstrom) is obtained.

** Optimization of cell parameters (2) [#o2598758]
In the case of crystalline silicon, the manual optimization (i.e. calculation of the total energy as a function of cell parameter) is straightforward.
However, if the system has a more complicated structure with low symmetry, the manual optimization is too complicated. In such a case we are able to calculate the stress tensor and optimize the cell parameters in addition to the internal coordinates. Here's how to optimize the cell parameter: The input file looks like:
 &control
    calculation   = 'vc-relax'
    restart_mode  = 'from_scratch',
    pseudo_dir    = '/home/ikutaro/QE/pseudo/',
    outdir        = './tmp'
    prefix        = 'si'
    tstress       = .true.
    tprnfor       = .true.
    forc_conv_thr = 2.0d-4
 /
 &system
    ibrav     = 2
    celldm(1) = 10.20
    nat= 2
    ntyp= 1,
    ecutwfc = 35.0
 /
 &electrons
    diagonalization = 'cg'
    conv_thr        = 1.0e-12
    mixing_beta     = 0.7
 /
 &ions
 /
 &cell
    press          = 0.0d0
    press_conv_thr = 0.5d0
    cell_dynamics  = 'bfgs'
 &
 ATOMIC_SPECIES
  Si  0.000   Si_ONCV_PBE-1.1.upf
 ATOMIC_POSITIONS (crystal)
  Si  0.0000  0.0000  0.0000
  Si  0.2500  0.2500  0.2500
 K_POINTS (automatic)
  04 04 04 1 1 1
In the cell optimization, the following is used
    calculation   = 'vc-relax'
where "vc" stands for "variable cell shape."
In addition, the following name lists should be included in the input file
 &ions
 /
 &cell
    press          = 0.0d0
    press_conv_thr = 0.5d0
    cell_dynamics  = 'bfgs'
 &
See the [[input description>https://www.quantum-espresso.org/Doc/INPUT_PW.html]] for more options.
When "tstress = .true." the stress tensor and pressur are printed as
      Computing stress (Cartesian axis) and pressure
 
           total   stress  (Ry/bohr**3)                   (kbar)     P=   42.13
    0.00028636   0.00000000   0.00000000         42.13      0.00      0.00
   -0.00000000   0.00028636   0.00000000         -0.00     42.13      0.00
    0.00000000   0.00000000   0.00028636          0.00      0.00     42.13
When the cell optimization converges, the cell parameters, as well as the atomic positions are printed in the output as

 Begin final coordinates
      new unit-cell volume =    277.12964 a.u.^3 (    41.06638 Ang^3 )
      density =      2.27130 g/cm^3
 
 CELL_PARAMETERS (alat= 10.20000000)
   -0.507322537  -0.000000000   0.507322537
    0.000000000   0.507322537   0.507322537
   -0.507322537   0.507322537  -0.000000000
 
 ATOMIC_POSITIONS (crystal)
 Si      -0.000000000   0.000000000  -0.000000000
 Si       0.250000000   0.250000000   0.250000000
 End final coordinates
Note that the "CELL_PARAMETERS" should be multiplied with "alat" (in Bohr) to get the cell parameter (alat is fixed throughout the calculation and cell parameters scaled by alat are varied during the cell optimization).

The lattice parameter obtained by the "vc-relax" is 10.3494 Bohr (5.4767 Angstrom), which is slightly different from that obtained by the manual optimization.
Note that for the cell optimization with the stress, relatively large cutoff energy is required and care must be taken especially for the cutoff energy.

** Exercise [#wa6c0736]
The cell parameters should be converged with respect to cutoff energy and k-point. When do the lattice parameters obtained by the manual optimization and automatic optimization coincide within the certain error? What is the smallest cutoff energy needed to perform the "accurate" calculation?
トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS