* Crystalline Si [#me90bdef]
In this example, silicon in the diamond structure (space group number of 227) with the lattice constant of 10.30 Bohr, cutoff energy of 16 Ry (GMAX=4, GMAXP=8), and nonshifted 8 x 8 x 8 k-point, is used as an example of the SCF calculation of solid with the band gap.
** SCF calculation [#a76d305d]
- Input file (nfinp_1)
      0     0     0     0     0     0 : I_CTRL(1:6) (DUMMY)
   4.00  8.00     1     2     2       : GMAX, GMAXP, NTYP, NATM, NATM2
    227     2                         : NUM_SPACE_GROUP TYPE_BRAVIS_LATTICE
  10.30 10.30 10.30 90.00 90.00 90.00 : A B C ALPHA BETA GAMMA
     08    08    08     1     1     1 : N1 N2 N3 M1 M2 M3
      0     0                         : NCORD NINV : IWEI IMDTYP ITYP
 0.00d0      0.00d0      0.00d0    1    1    1
 0.25d0      0.25d0      0.25d0    1    1    1
     14  0.50 28.09     6     1   0.2 : TYPE 1IATOMN,ALFA,AMION,ILOC,IVAN
      0     0     0     0     0       : ICOND INIPOS INIVEL ININOS INIACC
      0     1                         : IPRE IPRI 
     20    20     0    84200.00     0 : NMD1 NMD2 LAST_ITER CPUMAX IFSTOP
      6     1                         : WAY_MIX MIX_WHAT
      0    20  0.60                   : ITER_START KBXMIX  MIX_ALPHA
      0.20  0.30  0.20  0.20  0.20    : DTIM1 DTIM2 DTIM3 DTIM4 DTIM
    300.00  4     1    0.50D-09       : DTIO IMDALG IEXPL EDELTA   
 0.0002    0.50D+03     0             : WIDTH FORCCR ISTRESS
 ggapbe     1                         : XCTYPE KSPIN
   2.00                               : DESTM
    102                               : NBZTYP
      4     4     4                   : DUMMY
      4     4     4                   : DUMMY
      8                               : KEG
      1                               : NEXTST    
      0                               : DUMMY
      2                               : IMSD
      0                               : EVALUATE_EKO_DIFF
      2                               : NPDOSAO
      1 
      2 
 -15.00  5.00  0.20   501
  2.400  0.20
         0.20    14
      0  0.00                         : SM_N DOPPING
- Execution (interactive mode)
 $ mpirun -np 6 ./STATE < nfinp_1 > nfout_1
- Execution (batch job)
 $ qsub qsub.sh
-- Job script (qsub.sh)
 #$ -S /bin/sh
 #$ -cwd
 #$ -pe fillup 6
 #$ -N Si
 
 #disable OPENMP parallelism
 OMP_NUM_THREADS=1
 
 # execuable of the STATE code
 ln -fs ../../src/STATE
 
 # pseudopotential data
 ln -fs ${HOME}/STATE/gncpp/pot.Si_pbe1 fort.37
  
 # launch STATE
 $ mpirun -np $NSLOTS ./STATE < nfinp_1 > nfout_1
 mpirun -np $NSLOTS ./STATE < nfinp_1 > nfout_1
- Output file (nfout_1)~
Convergence of the total energy can be monitored by using grep as
 $ grep ETOT: nfout_1
The result is:
 ETOT:   1     -6.05513096  0.6055E+01  0.3203E-02
 ETOT:   2     -7.84016187  0.1785E+01  0.5187E-02
 ETOT:   3     -7.87270490  0.3254E-01  0.2825E-02
 ETOT:   4     -7.87351715  0.8123E-03  0.6089E-03
 ETOT:   5     -7.87355245  0.3530E-04  0.1887E-03
 ETOT:   6     -7.87355822  0.5769E-05  0.2560E-04
 ETOT:   7     -7.87355833  0.1069E-06  0.1066E-04
 ETOT:   8     -7.87355833  0.4548E-08  0.1730E-05
 ETOT:   9     -7.87355833  0.1916E-09  0.4194E-06
 ETOT:  10     -7.87355833  0.2984E-10  0.1669E-07
 ETOT:  11     -7.87355833  0.1951E-11  0.9524E-08
Converged total energy and its components
                      TOTAL ENERGY AND ITS COMPONENTS 
                   TOTAL ENERGY     =          -7.87355833 A.U.
                    FREE ENERGY     =          -7.87355833 A.U.
                 KINETIC ENERGY     =           3.01922457 A.U.
                 HARTREE ENERGY     =           0.55014222 A.U.
                      XC ENERGY     =          -2.40098662 A.U.
                   LOCAL ENERGY     =          -0.84294976 A.U.
                NONLOCAL ENERGY     =           0.16885288 A.U.
                   EWALD ENERGY     =          -8.36784162 A.U.
                      PC ENERGY     =           0.00000000 A.U.
                ENTROPIC ENERGY     =           0.00000000 A.U.
** Band structure calculation [#q35a4f7f]
To calculate the band structure, an SCF calculation is performed to obtain a converged charge density, and the non-SCF calculation along the symmetry lines is performed.
- Input file (nfinp_scf)
  0  0  0  0  0  0                      : INPUT_CTRL(1:6) (DUMMY)
  6.00  12.00 1  2  2                   : GMAX GMAXP NTYP NATM NATM2
  227   2                               : num_space_group, type
 10.2347 10.2347 10.2347 90.0 90.0 90.0 : A B C ALPHA BETA GAMMA
  4  4  4  2  2  2                      : N1 N2 N3 M1 M2 M3
  0  0                                  : NCORD, NINV
  0.00  0.00  0.00  1  1  1             : CPS(1,1:3) IWEI IMDTYP ITYP
  0.25  0.25  0.25  1  1  1             : CPS(2,1:3) IWEI IMDTYP ITYP
  14 0.5000 28.09 6 1 0.0               : ATOMN ALFA AMION ILOC IVAN ZETA1
  0     0     0     0     0             : ICOND INIPOS INIVEL ININOS INIACC
  0     1                               : IPRE IPRI
  200   200   0     84200.00    0       : NMD1 NMD2 LAST_ITER CPUMAX IFSTOP
  6     1                               : WAY_MIX MIX_WHAT
  0     20    0.60                      : ITER_START KBXMIX MIX_ALPHA
  0.20  0.30  0.20  0.20  0.20          : DTIM1 DTIM2 DTIM3 DTIM4 DTIM
  300.00      4     1     0.50D-09      : DTIO IMDALG IEXPL EDELTA
 -0.0020      0.50D+03    0             : WIDTH FORCCR ISTRESS
 ggapbe     1                           : xctype,kspin
  2.00                                  : DETSTM
  101                                   : NBZTYP
  0     0     0                         : NKX NKY NKZ (DUMMY)
  0     0     0                         : NKX2 NKY2 NKZ2 (DUMMY)
  8                                     : KEG
  1                                     : NEXTST
  0                                     : (DUMMY)
  2                                     : IMSD
  0                                     : EVALUATE_EKO_DIFF
  0                                     : NPDOSAO
  0        0.00                         : SM_N DOPING

- Input file (nfinp_band)
0  0  0  0  0  0                      : INPUT_CTRL(1:6) (DUMMY)
  6.00  12.00 1  2  2                   : GMAX GMAXP NTYP NATM NATM2
  227   2                               : num_space_group, type
 10.2347 10.2347 10.2347 90.0 90.0 90.0 : A B C ALPHA BETA GAMMA
  4  4  4  2  2  2                      : N1 N2 N3 M1 M2 M3
  0  0                                  : NCORD, NINV
  0.00  0.00  0.00  1  1  1             : CPS(1,1:3) IWEI IMDTYP ITYP
  0.25  0.25  0.25  1  1  1             : CPS(2,1:3) IWEI IMDTYP ITYP
  14 0.5000 28.09 6 1 0.0               : ATOMN ALFA AMION ILOC IVAN ZETA1
 22     0     0     0     0             : ICOND INIPOS INIVEL ININOS INIACC
  0     1                               : IPRE IPRI
  200   200   0     84200.00    0       : NMD1 NMD2 LAST_ITER CPUMAX IFSTOP
  6     1                               : WAY_MIX MIX_WHAT
  0     20    0.60                      : ITER_START KBXMIX MIX_ALPHA   
  0.20  0.30  0.20  0.20  0.20          : DTIM1 DTIM2 DTIM3 DTIM4 DTIM
  300.00      4     1     0.50D-09      : DTIO IMDALG IEXPL EDELTA
 -0.0100      0.50D+03    0             : WIDTH FORCCR ISTRESS
 ggapbe     1                           : xctype,kspin
  2.00                                  : DETSTM
  101                                   : NBZTYP
  0     0     0                         : NKX NKY NKZ (DUMMY)
  0     0     0                         : NKX2 NKY2 NKZ2 (DUMMY)
 16                                     : KEG 
  1                                     : NEXTST
  0                                     : (DUMMY)
  2                                     : IMSD
  0                                     : EVALUATE_EKO_DIFF
  0                                     : NPDOSAO
  0        0.00                         : SM_N DOPING  
 &KPOINTS_BAND
  NKSEG 6
  KMESH 40 20 20 20 40 20
  KPOINTS
  0.000 0.000 0.000
  0.000 0.500 0.500
  0.250 0.500 0.750
  0.500 0.500 0.500
  0.000 0.000 0.000
  0.375 0.375 0.750
  0.500 0.500 1.000
 &END
When the non-SCF calculation is performed, k-points and Kohn-Sham eigenvalues are printed in "energy.data." However, "energy.data" alone cannot be used to plot the band structure. For this purpose, "energy2band" included in the "util" directory is used.
Here a sample bash script, which generate the band structure is shown.
 #!/bin/sh
 #
 # Fermi level obtained in the SCF calculation
 ef=0.0790726449
 # Number of k-points
 nk=161
 # Number of bands
 nb=16
 # Divisions for each segment (in this case we have 6 segments)
 ik1=40
 ik2=60
 ik3=80
 ik4=100
 ik5=140
 ik6=160
 # Maximum energy
 emin=-12.5
 # Minimum energy
 emax=7.5
 #
 nk1=`expr $ik1 + 2`
 nk2=`expr $ik2 + 2`
 nk3=`expr $ik3 + 2`
 nk4=`expr $ik4 + 2`
 nk5=`expr $ik5 + 2`
 nk6=`expr $ik6 + 2`
 #
 e2b=~/STATE/util/bandutil/src/energy2band
 #
 ${e2b} << EOF
 ${nb}
 ${nb}
 ${nk}
 ${ef}
 EOF
 #
 k1=`head -${nk1} band.data | tail -1 | awk '{print $1}'`
 k2=`head -${nk2} band.data | tail -1 | awk '{print $1}'`
 k3=`head -${nk3} band.data | tail -1 | awk '{print $1}'`
 k4=`head -${nk4} band.data | tail -1 | awk '{print $1}'`
 k5=`head -${nk5} band.data | tail -1 | awk '{print $1}'`
 k6=`head -${nk6} band.data | tail -1 | awk '{print $1}'`
 #
 xmin=0.0
 xmax=${k6}
 offset=-0.5
 #
 pos=`echo "scale=2; $emin + $offset" | bc`
 #
 gnuplot<<EOF
 set xrange [$xmin:$xmax]
 set yrange [$emin:$emax]
 set arrow from ${k1},${emin} to ${k1},${emax} nohead lt 0
 set arrow from ${k2},${emin} to ${k2},${emax} nohead lt 0
 set arrow from ${k3},${emin} to ${k3},${emax} nohead lt 0
 set arrow from ${k4},${emin} to ${k4},${emax} nohead lt 0
 set arrow from ${k5},${emin} to ${k5},${emax} nohead lt 0
 unset xtics
 set mytics
 set ylabel 'Energy (eV)'
 set label '{/Symbol G}' at 0.0, ${pos}
 set label 'X' at ${k1}, ${pos}
 set label 'W' at ${k2}, ${pos}
 set label 'L' at ${k3}, ${pos}
 set label '{/Symbol G}' at ${k4}, ${pos}
 set label 'K' at ${k5}, ${pos}
 set label 'X' at ${k6}, ${pos}
 plot 'band.data' with lines
 EOF
Note that the energy origin is set to the valence band maximum, which is located at the Gamma point.
トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS